A NOVEL SYNTHESIS OF 6,8-DIOXABICYCLO[3.2.1]OCTANE DERIVATIVES BY THE REACTION OF CITRAL WITH THALLIUM(III) PERCHLORATE

Yasuji Yamada*, Hidenao Sanjoh and Kazuo Iguchi Tokyo College of Pharmacy, Horinouchi 1432-1, Hachioji, Tokyo 192-03, Japan

Recently attention has been given to the natural products¹⁾ having a 6,8-dioxabicyclo[3.2.1]octane skeleton I owing to their pheromone activities against

Coord Andrew Coord

bark beetles. In connection with these biological importance, the syntheses of the pheromones were extensively studied²⁾. In the course of our investigation on the thallium(III) induced cyclization³⁾ of 1,5-dienes, we have found that the reaction of citral <u>1</u>, trans-3,7-dimethyl-2,6-octadienal, with thallium-(III) salts gave directly 6,8-dioxabicyclo[3.2.1]octane derivatives in high yield. Here we wish to describe a novel synthesis of 6,8-dioxabicyclo[3.2.1]octane derivatives <u>2a-d</u> by the reaction of <u>1</u> with thallium(III) perchlorate.

Treatment of citral 1(1.63 g) in methylene chloride(40 ml) with the diluted thallium(III) perchlorate solution⁴)(100 ml, ca. 3 equiv.) at room temperature for 6 hr with extremely vigorous stirring gave a diastereomeric mixture of the aldehydes 2a-d (1.55 g, 80 % yield); the ¹H-NMR signals(**3** 9.50-10.0 ppm) and the IR absorptions(1720-1724 cm⁻¹) of the mixture clearly showed the presence of an aldehyde group. Glc analysis⁵) of the mixture showed four peaks with the ratio of 12:11:37:20 corresponding to 2a, 2b, 2c and 2d, respectively. For the purpose of separation and structure elucidation, the aldehydes mixture was submitted to

Table 1 H-NMR and 13 C-NMR Chemical Shifts of 3a-d.

	R ¹	R ²	R ³	R ⁴	¹ H-NMR(CDC1 ₃ ,100 MHz) § ppm	¹³ C-NMR	(CDC1 ₃ ,2	5.0 MHz)	S ppm	
<u>3a</u>	Н	CH3	CH ₂ O	нн	0.80(3H,d,J=6.0) 1.20(3H,s) 1.36(3H,s) 3.5-4.0(3H,m)	16.5(q) 37.3(d)	22.6(q) 61.0(t)	22.9(q) 79.8(s)	27.2(t) 85.3(d)	31.6(t) 109.5(s)
<u>3b</u>	CH3	Н	CH ₂ O	ΗH	0.98(3H,d,J=8.0) 1.20(3H,s) 1.35(3H,s) 3.5-4.2(3H,m)	16.4(q) 35.6(d)	22.9(q) 61.0(t)	23.1(q) 80.9(s)	25.6(t) 84.4(d)	27.0(t) 109.7(s)
<u>3c</u>	Н	ан ₃	Н	CH ₂ OH	0.89(3H,d,J=6.0) 1.28(3H,s) 1.40(3H,s) 3.54(2H,m) 3.90(1H,dd,J=6.0,4.0)	16.6(q) 38.0(d)	19.9(q) 63.7(t)	22.9(q) 80.3(s)	26.8(t) 81.3(d)	36.6(t) 109.7(s)
<u>3d</u>	CH3	Н	н	CH ₂ OH	1.04(3H,d,J=7.0) 1.28(3H,s) 1.41(3H,s) 3.56(2H,m) 3.92(1H,dd,J=6.0,4.0)	15.8(q) 35.9(d)	20.0(q) 63.7(t)	23.4(q) 80.5(d)	25.1(t) 81.4(s)	31.6(t) 109.8(s)

the reduction with sodium borohydride(EtOH, 30 min) giving quantitatively the corresponding alcohols $\underline{3a-d}^{6}$, which were separated by repeated preparative thinlayer chromatography. The structures of diastereomeric 7-hydroxymethyl-1,4,5trimethyl-6,8-dioxabicyclo[3.2.1]octanes for $\underline{3a-d}$ were fully elucidated by the spectral data as shown in the Table. Thus the structures of the initially formed aldehydes were apparently represented as $\underline{2a-d}$.

The formation of $2a \cdot d$ is well explained by the reaction path way as illustrated. Initially the ketoaldehyde II is formed by oxythallation of <u>1</u> followed by rearrangement of the methyl group. Subsequently oxythallation of the remaining C-C double bond of II takes place to give an intermediate III, which finally undergoes intramolecular ketalization giving the unique 6,8-dioxabicyclo[3.2.1]octane skeleton.

References and Notes

- R.M.Silverstein, R.G.Brownlee, T.E.Bellas, D.L.Wood and L.E.Browne, Science, <u>159</u>, 889(1968); G.W.Kinzer, A.F.Fentiman, Jr., T.F.Page, Jr., R.L.Foltz, J.P.Vité and G.B.Pitman, Nature(London), <u>221</u>, 477(1969); G.T.Pearce, W.E.Gore, R.M.Silverstein, J.W.Peacock, R.A.Cuthbert, G.N.Lanier and J.B.Simeone, J.Chem.Ecol., <u>1</u>, 115(1975).
- H.H.Wasserman and E.H.Barber, J.Amer.Chem.Soc., <u>91</u>, 3674(1969); K.Mori, Tetrahedron, <u>31</u>, 1381 (1975); W.E.Gore, G.T.Pearce and R.M.Silverstein, J.Org.Chem., <u>40</u>, 1705(1975); W.E.Gore, G.T.Pearce and R.M.Silverstein, J.Org.Chem., <u>41</u>, 603(1976); H.Ohrui and S.Emoto, Agr.Biol. Chem., <u>40</u>, 2267(1976); P.Chaquin, J.-P.Morizur and T.Kossanyi, J.Amer.Chem.Soc., <u>99</u>, 903(1977); P.Magnus and G.Roy, J.Chem.Soc.Chem.Commun., 297(1978).
- Y.Yamada, H.Sanjoh and K.Iguchi, J.Chem.Soc.Chem.Commun., 997(1976); Y.Yamada, A.Shibata, K.Iguchi and H.Sanjoh, Tetrahedron Letters, 2407(1977).
- 4. The reagent solution was prepared by dissolving Tl₂O₃(91 g) in 70 % perchloric acid(206 ml) at 120-130° followed by dilution with water(1100 ml) in order to prevent acid catalyzed side reactions.
- 5. The retention times of 2a, 2b, 2c and 2d (1.5 % SE-30 on Chrom W, column temp. 100°, He) are 8.4, 9.0, 9.9 and 10.6 min, respectively.
- 6. Satisfactory elemental analyses and/or high resolution mass measurements were obtained for these new compounds.

(Received in Japan 8 November 1978)